Measuring Heart Rate Variability

Foundations of Heart Rate Variability

Short-term measurements

1-5 minutes

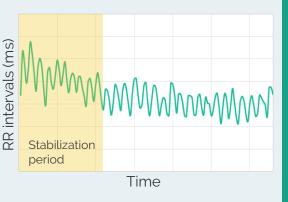
Trend-able Actionable

Long-term measurements > 5 minutes – usually hours (24hrs)

Can help determine what parts of the day produce more stress Used to practice live biofeedback Serves as warning for impending catastrophe Used to gather short-term snippets

Short-term Measurement Durations

1 minute is minimum valid sample


5 minutes is considered the "gold standard" for short-term readings

Shorter readings are more sensitive to anomalies

Longer readings are more forgiving to artifacts but increase likelihood of introducing human factors

Pre-reading "stabilization"

Let heart rate level out before recording HRV

Why Baseline?

What is your "normal"? Readings taken in isolation are less meaningful

Readings taken over multiple days reduces chance of a single measurement skewing results

How often to measure?

Ideal - every day (missing days may miss key events) Minimum - 4 days per week (3 for elite athletes) Better - 5+ days per week

 \uparrow frequency = \uparrow confidence = better trend accuracy and predictability

When to measure?

HRV measurements taken at rest are most recommended because they have been heavily researched, are practically proven, and are easily trend-able

HRV naturally changes throughout the day due to

internal processes and external/internal stressors. Measuring first thing in the morning eliminates many variables for more consistency.

Ideal - Measure first thing upon waking from longest sleep (within 30 minutes)

Practical - Measure during a rest time that is most consistent for your schedule (shift schedules or travel)

🐈 Consistency is key to taking meaningful measurements!!

Measuring Positions & Breathing

Foundations of Heart Rate Variability

Resting vs. Non-resting Measurements

HRV measurements can be taken at rest or while active but measurements taken at rest are most recommended since they have been heavily researched, are practically proven, and easily trend-able

Measuring Positions at Rest – Consistency is Key! Supine / Laying Sitting Repeatable with care Most repeatable More accessible throughout the day Consistent for longer readings More difficult for longer readings Most Parasympathetic activation Back supported vs. unsupported ✓ Recommended when resting HR is above 50 bpm ✓ Recommended when resting HR is below 50 bpm while lying **Resting Squat** Standing / Orthostatic Repeatable with extreme care Repeatable with care Easiest to do anywhere Accessible anywhere Most stress on the system More stress on the system Less researched ✓ Least recommended unless testing ✓ Recommended only if you have a truly orthostatic intentionally ✓ Not recommended for longer duration easy, resting squat

Back angle while sitting can affect HRV because of structural stress✓ Be conscious of back angle and choose an easily repeatable position

Breathing Patterns During Measurement

Breathing patterns can artificially influence HRV Slower breathing elicits strong ANS activation

"Readiness/Daily" Reading

- · Recommend to not use paced breathing
- If you do use guided breathing during then only use "natural" breathing pace

Meditation/Live Biofeedback Reading

- Paced breathing is recommended
- Slow, deep diaphragmatic breathing
- Resonance breathing

HRVcourse.com

R-R Interva

Measurement Devices

Foundations of Heart Rate Variability

Device accuracy is extremely important when measuring HRV!

An inaccurate device will provide an inaccurate and invalid HRV value

Passive Electric vs. PPG Heart Rate Monitors

Passive Electric - Passively receives electrical signals produced by heart contractions and transmits data

Types of Electrical Passive HR monitors

- ECG/EKG (electrocardiogram) 3-12 leads; detects full QRS complex
- Chest strap 1-2 leads and detects RRs
- Custom combos usually detects RRs
- Handheld 2 leads and detects RRs

Practical Tip: Moisten sensor and secure snugly but comfortably for best contact and least chance of movement artifacts

📩 Pros	U Cons
 ✓ Proven more accurate under many conditions ✓ Accessible ✓ Less chance of limb movement artifacts ✓ Compatible with many wireless transmitting protocols 	 Requires skin preparation & more time Signal noise when not at rest due to core movement Loss of skin contact can produce high-amplitude signal fluctuations that appear as extra beats Less convenient for certain people (smaller women or men with chest hair)

PPG (PhotoPlethysmoGraph) sensor - Measures the relative amount of blood flow through tissue using a photoelectric transducer

 Types of PPG HR monitors Finger Ear Wrist Pros 	Practical Tip: Consider/check circulation, pressure, placement on skin, and limb position
 ✓ Accessible ✓ Less preparation > more convenient ✓ Compatible with many wireless transmitting protocols 	 Not extensively proven for accuracy Not good for people with bad circulation, certain skin colors, or fidgety people More sensitive to signal artifacts from: Limb position relative to heart Lina interformer
If a device measures HR, that does not mean it measures HRV Even if a device transmits RR intervals, those RRs might be estimated, altered, or smoothed	 Line interference Ambient light or external light interference Sensor movement Blood volume discrepancies Pressure More difficult and less accurate for longer readings